Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.376
Filtrar
1.
Drug Des Devel Ther ; 18: 967-978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562518

RESUMO

Background: Remimazolam is a novel ultra-short-acting benzodiazepine sedative that has the potential to be an alternative for procedural sedation due to its rapid sedation and recovery, no accumulation effect, stable hemodynamics, minimal respiratory depression, anterograde amnesia effect, and specific antagonist. Here, we aimed to compare the safety and efficacy of remimazolam with dexmedetomidine for awake tracheal intubation by flexible bronchoscopy (ATI-FB). Methods: Ninety patients scheduled for ATI-FB were randomly divided into three groups, each consisting of 30 cases: dexmedetomidine 0.6 µg/kg + sufentanil (group DS), remimazolam 0.073 mg/kg + sufentanil (group R1S), or remimazolam 0.093 mg/kg + sufentanil (group R2S). The primary outcome was the success rate of sedation. Secondary outcomes were MOAA/S scores, hemodynamic and respiratory parameters, intubation conditions, intubation time, tracheal intubation amnesia, and adverse events. Results: The success rates of sedation in groups R2S and DS were higher than that in group R1S (93.3%, 86.7%, respectively, vs 58.6%; P = 0.002), and intubation conditions were better than those in group R1S (P < 0.05). Group R2S had shorter intubation times than groups R1S and DS (P = 0.003), and a higher incidence of tracheal intubation amnesia than group DS (P = 0.006). No patient in the three groups developed hypoxemia or hypotension, and there were no significant differences in oligopnea, PetCO2, or bradycardia (P > 0.05). Conclusion: In conclusion, both DS and R2S had higher success rates of sedation, better intubation conditions, and minor respiratory depression, but R2S, with its shorter intubation time, higher incidence of anterograde amnesia, and ability to be antagonized by specific antagonists, may be a good alternative sedation regimen for patients undergoing ATI-FB.


Assuntos
Amnésia Anterógrada , Dexmedetomidina , Insuficiência Respiratória , Humanos , Amnésia/induzido quimicamente , Amnésia Anterógrada/induzido quimicamente , Benzodiazepinas , Broncoscopia/efeitos adversos , Dexmedetomidina/efeitos adversos , Hipnóticos e Sedativos/efeitos adversos , Intubação Intratraqueal/efeitos adversos , Insuficiência Respiratória/induzido quimicamente , Sufentanil , Vigília , Método Duplo-Cego
2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612521

RESUMO

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Assuntos
Di-Hidroergotamina , Escopolamina , Animais , Ratos , Histamina , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Encéfalo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Antagonistas dos Receptores H2 da Histamina
3.
Behav Brain Res ; 465: 114963, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499158

RESUMO

Lisdexamfetamine (LDX) is one of the drugs commonly used to treat attention deficit hyperactivity disorder (ADHD). However, its neurological side effects, particularly on cognition, are not fully understood. The present study focused on memory in rats treated with four weeks of LDX injection. We compared LDX-treated rats with control ones, using several methods to evaluate the behavioral responses and electrophysiological, molecular, and histological properties in the hippocampus. Our findings demonstrated that subchronic administration of LDX impaired behavioral performance in all memory assessment tests (Y maze, Morris Water Maze, and Shuttle box). Although LDX did not alter population spike (PS) amplitude, it increased the field excitatory postsynaptic potential (fEPSP) slope of evoked potentials of LTP components. Also, in addition to an increase in expression of caspase-3 in the hippocampus, which indicates the susceptibility to apoptosis in LDX-treated rats, the number of microglia and astrocytes went up significantly in the LDX group. Moreover, Sholl's analysis showed an increase in the soma size and total process length in both hippocampal astrocytes and microglia. Overall, because of these destructive effects of LDX on the hippocampus, which is one of the critical memory-related areas of the brain, the findings of this investigation provide evidence to show the disruption of memory-related variables following the LDX. However, more research is needed to clarify it.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Ratos , Animais , Dimesilato de Lisdexanfetamina/uso terapêutico , Dextroanfetamina , Resultado do Tratamento , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Amnésia/induzido quimicamente , Estimulantes do Sistema Nervoso Central/farmacologia , Método Duplo-Cego
5.
Metab Brain Dis ; 39(4): 589-609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351421

RESUMO

This study aimed to investigate the action of two different formulations of curcumin (Cur)-loaded nanocapsules (Nc) (Eudragit [EUD] and poly (ɛ-caprolactone) [PCL]) in an amnesia mice model. We also investigated the formulations' effects on scopolamine-induced (SCO) depressive- and anxiety-like comorbidities, the cholinergic system, oxidative parameters, and inflammatory markers. Male Swiss mice were randomly divided into five groups (n = 8): group I (control), group II (Cur PCL Nc 10 mg/kg), group III (Cur EUD Nc 10 mg/kg), group IV (free Cur 10 mg/kg), and group V (SCO). Treatments with Nc or Cur (free) were performed daily or on alternate days. After 30 min of treatment, the animals received the SCO and were subjected to behavioral tests 30 min later (Barnes maze, open-field, object recognition, elevated plus maze, tail suspension tests, and step-down inhibitory avoidance tasks). The animals were then euthanized and tissue was removed for biochemical assays. Our results demonstrated that Cur treatment (Nc or free) protected against SCO-induced amnesia and depressive-like behavior. The ex vivo assays revealed lower acetylcholinesterase (AChE) and catalase (CAT) activity, reduced thiobarbituric species (TBARS), reactive species (RS), and non-protein thiols (NSPH) levels, and reduced interleukin-6 (IL-6) and tumor necrosis factor (TNF) expression. The treatments did not change hepatic markers in the plasma of mice. After treatments on alternate days, Cur Nc had a more significant effect than the free Cur protocol, implying that Cur may have prolonged action in Nc. This finding supports the concept that it is possible to achieve beneficial effects in nanoformulations, and treatment on alternate days differs from the free Cur protocol regarding anti-amnesic effects in mice.


Assuntos
Amnésia , Curcumina , Modelos Animais de Doenças , Nanocápsulas , Animais , Curcumina/farmacologia , Curcumina/administração & dosagem , Curcumina/uso terapêutico , Camundongos , Masculino , Amnésia/tratamento farmacológico , Amnésia/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Escopolamina
6.
J Nutr Biochem ; 124: 109536, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981108

RESUMO

Memory impairment during aging and amnesia is attributed to compromised mitochondrial dynamics and mitophagy and other mitochondrial quality control mechanisms. Mitochondrial dynamics involves the continuous process of fission and fusion of mitochondria within a cell and is a fundamental mechanism for regulating mitochondrial quality and function. An extensive range of potential nutritional supplements has been shown to improve mitochondrial health, synaptic plasticity, and cognitive functions. Previous findings revealed that supplementation of vitamin B12-folic acid reduces locomotor deficits and mitochondrial abnormalities but enhances mitochondrial and neuronal health. The present study aims to explore the impact of combined vitamin B12-folic acid supplementation on mitochondrial dynamics, neuronal health, and memory decline in old age and scopolamine-induced amnesia, which remains elusive. The results demonstrated that supplementation led to a noteworthy increase in recognition and spatial memory and expression of memory-related protein BDNF in old and amnesic mice. Moreover, the decrease in the fragmented mitochondrial number was validated by the downregulation of mitochondrial fission p-Drp1 (S616) protein and the increase in elongated mitochondria by the upregulation of mitochondrial fusion Mfn2 protein. The increased spine density and dendritic arborization in old and amnesic mice upon supplementation were confirmed by the enhanced expression level of PSD95 and synaptophysin. Furthermore, supplementation reduced ROS production, inhibited Caspase-3 activation, mitigated neurodegeneration, and enhanced mitochondrial membrane potential, ATP production, Vdac1 expression, myelination, in old and amnesic mice. Collectively, our findings imply that combined supplementation of vitamin B12-folic acid improves mitochondrial dynamics and neuronal health, and leads to recovery of memory during old age and amnesia.


Assuntos
Dinâmica Mitocondrial , Vitamina B 12 , Camundongos , Masculino , Animais , Ácido Fólico/farmacologia , Amnésia/induzido quimicamente , Suplementos Nutricionais , Plasticidade Neuronal , Vitaminas/efeitos adversos
7.
Mol Neurobiol ; 61(1): 487-497, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37626270

RESUMO

Histone post-translational modifications play an important role in the regulation of long-term memory and modulation of expression of neuronal immediate early genes (IEGs). The lysine methyltransferase KMT1A/ Suv39h1 (a mammalian ortholog of the Drosophila melanogaster SU (VAR) 3-9) aids in the methylation of histone H3 at lysine 9. We previously reported that age-related memory decline is associated with an increase in Suv39h1 expression in the hippocampus of male mice. The scopolamine-induced amnesic mouse model is a well-known animal model of memory impairment. In the current study, we have made an attempt to find a link between the changes in the H3K9 trimethylation pattern and memory decline during scopolamine-induced amnesia. It was followed by checking the effect of siRNA-mediated silencing of hippocampal Suv39h1 on memory and expression of neuronal IEGs. Scopolamine treatment significantly increased global levels of H3K9me3 and Suv39h1 in the amnesic hippocampus. Suv39h1 silencing in amnesic mice reduced H3K9me3 levels at the neuronal IEGs (Arc and BDNF) promoter, increased the expression of Arc and BDNF in the hippocampus, and improved recognition memory. Thus, these findings suggest that the silencing of Suv39h1 alone or in combination with other epigenetic drugs might be effective for treating memory decline during amnesia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Escopolamina , Animais , Masculino , Camundongos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Transtornos da Memória/tratamento farmacológico
8.
Psychopharmacology (Berl) ; 241(1): 139-152, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37758936

RESUMO

RATIONALE: Tramadol and ethanol, as psychoactive agents, are often abused. Discovering the molecular pathways of drug-induced memory creation may contribute to preventing drug addiction and relapse. OBJECTIVE: The tramadol- and ethanol-induced state-dependent memory (SDM) and cross-SDM retrieval between tramadol and ethanol were examined in this study. Moreover, because of the confirmed involvement of GABAA receptors and GABAergic neurotransmission in memory retrieval impairment, we assessed cross-SDM retrieval between tramadol and ethanol with a specific emphasis on the role of the GABAA receptors. The first hypothesis of this study was the presence of cross-SDM between tramadol and ethanol, and the second hypothesis was related to possible role of GABAA receptors in memory retrieval impairment within the dorsal hippocampus. The cannulae were inserted into the hippocampal CA1 area of NMRI mice, and a step-down inhibitory avoidance test was used to evaluate state dependence and memory recovery. RESULTS: The post-training and/or pre-test administration of tramadol (2.5 and 5 mg/kg, i.p.) and/or ethanol (0.5 and 1 g/kg, i.p.) induced amnesia, which was restored after the administration of the drugs 24 h later during the pre-test period, proposing ethanol and tramadol SDM. The pre-test injection of ethanol (0.25 and 0.5 g/kg, i.p.) with tramadol at an ineffective dose (1.25 mg/kg) enhanced tramadol SDM. Moreover, tramadol injection (1.25 and 2.5 mg/kg) with ethanol at the ineffective dose (0.25 g/kg) promoted ethanol SDM. Furthermore, the pre-test intra-CA1 injection of bicuculline (0.0625, 0.125, and 0.25 µg/mouse), a GABAA receptor antagonist, 5 min before the injection of tramadol (5 mg/kg) or ethanol (1 g/kg) inhibited tramadol- and ethanol-induced SDM dose-dependently. CONCLUSION: The findings strongly confirmed cross-SDM between tramadol and ethanol and the critical role of dorsal hippocampal GABAA receptors in the cross-SDM between tramadol and ethanol.


Assuntos
Tramadol , Camundongos , Animais , Tramadol/farmacologia , Etanol/farmacologia , Memória , Hipocampo , Amnésia/induzido quimicamente , Amnésia/metabolismo , Camundongos Endogâmicos , Aprendizagem da Esquiva , Região CA1 Hipocampal , Receptores de GABA-A/metabolismo
9.
Neurosci Lett ; 820: 137595, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38096972

RESUMO

The current study was designed to examine the role of glutamate NMDA receptors of the mediodorsal thalamus (MD) in scopolamine-induced memory impairment. Adult male rats were bilaterally cannulated into the MD. According to the results, intraperitoneal (i.p.) administration of scopolamine (1.5 mg/kg) immediately after the training phase (post-training) impaired memory consolidation. Bilateral microinjection of the glutamate NMDA receptors agonist, N-Methyl-D-aspartic acid (NMDA; 0.05 µg/rat), into the MD significantly improved scopolamine-induced memory consolidation impairment. Co-administration of D-AP5, a glutamate NMDA receptor antagonist (0.001-0.005 µg/rat, intra-MD) potentiated the response of an ineffective dose of scopolamine (0.5 mg/kg, i.p.) to impair memory consolidation, mimicking the response of a higher dose of scopolamine. Noteworthy, post-training intra-MD microinjections of the same doses of NMDA or D-AP5 alone had no effect on memory consolidation. Moreover, the blockade of the glutamate NMDA receptors by 0.003 ng/rat of D-AP5 prevented the improving effect of NMDA on scopolamine-induced amnesia. Thus, it can be concluded that the MD glutamatergic system may be involved in scopolamine-induced memory impairment via the NMDA receptor signaling pathway.


Assuntos
N-Metilaspartato , Escopolamina , Ratos , Masculino , Animais , Escopolamina/farmacologia , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutâmico/metabolismo , Ratos Wistar , Amnésia/induzido quimicamente , Transtornos da Memória/induzido quimicamente , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Tálamo/metabolismo , Aprendizagem da Esquiva
10.
Bull Exp Biol Med ; 175(4): 427-432, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37768459

RESUMO

The participation of DNA methylation processes in the mechanisms of anterograde and retrograde amnesia caused by impaired reconsolidation of conditioned food aversion memory by NMDA glutamate receptor antagonists or serotonin receptor antagonists, respectively, were studied on grape snails. Anterograde amnesia was characterized by impaired formation of long-term memory during repeated learning. Administration of a DNA methyltransferase (DNMT) inhibitor to amnestic animals resulted in accelerated formation of long-term memory during 1 day of repetitive training vs 3 days during initial training. In serotonin-dependent retrograde amnesia, repeated learning without DNMT inhibitor administration or after inhibitor injections led to the formation of long-term memory. The dynamics of memory formation was similar in both cases and did not differ from that during the initial training: the memory was formed within 3 days of training. Thus, epigenetic processes of DNA methylation are selectively involved in the mechanisms of anterograde amnesia, but do not participate in the mechanisms of retrograde amnesia.


Assuntos
Amnésia Anterógrada , Animais , Metilação de DNA , Amnésia Retrógrada/genética , Amnésia/induzido quimicamente , Amnésia/genética , Inibidores Enzimáticos , Epigênese Genética
11.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628900

RESUMO

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Assuntos
Doença de Alzheimer , Antagonistas dos Receptores Histamínicos H3 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Maleato de Dizocilpina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Serina-Treonina Quinases TOR , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Transdução de Sinais , Cognição
12.
Biomed Pharmacother ; 165: 115144, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437376

RESUMO

The current study aims to quantify HPLC-DAD polyphenolics in the crude extracts of Desmodium elegans, evaluating its cholinesterase inhibitory, antioxidant, molecular docking and protective effects against scopolamine-induced amnesia in mice. A total of 16 compounds were identified which include gallic acid (239 mg g-1), p-hydroxybenzoic acid (11.2 mg g-1), coumaric acid (10.0 mg g-1), chlorogenic acid (10.88 mg g-1), caffeic acid (13.9 mg g-1), p-coumaroylhexose (41.2 mg g-1), 3-O-caffeoylquinic acid (22.4 mg g-1), 4-O-caffeoylquinic acid (6.16 mg g-1), (+)-catechin (71.34 mg g-1), (-)-catechin (211.79 mg g-1), quercetin-3-O-glucuronide (17.9 mg g-1), kaempferol-7-O-glucuronide (13.2 mg g-1), kaempferol-7-O-rutinoside (53.67 mg g-1), quercetin-3-rutinoside (12.4 mg g-1), isorhamnetin-7-O-glucuronide (17.6 mg g-1) and isorhamnetin-3-O-rutinoside (15.0 mg g-1). In a DPPH free radical scavenging assay, the chloroform fraction showed the highest antioxidant activity, with an IC50 value of 31.43 µg mL-1. In an AChE inhibitory assay, the methanolic and chloroform fractions showed high inhibitory activities causing 89% and 86.5% inhibitions with IC50 values of 62.34 and 47.32 µg mL-1 respectively. In a BChE inhibition assay, the chloroform fraction exhibited 84.36% inhibition with IC50 values of 45.98 µg mL-1. Furthermore, molecular docking studies revealed that quercetin-3-rutinoside and quercetin-3-O-glucuronide fit perfectly in the active sites of AChE and BChE respectively. Overall, the polyphenols identified exhibited good efficacy, which is likely as a result of the compounds' electron-donating hydroxyl groups (-OH) and electron cloud density. The administration of methanolic extract improved cognitive performance and demonstrated anxiolytic behavior among tested animals.


Assuntos
Doença de Alzheimer , Escopolamina , Camundongos , Animais , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Polifenóis/efeitos adversos , Clorofórmio/efeitos adversos , Quercetina/efeitos adversos , Simulação de Acoplamento Molecular , Glucuronídeos , Extratos Vegetais/efeitos adversos , Inibidores da Colinesterase/efeitos adversos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Antioxidantes/efeitos adversos , Metanol/química , Modelos Animais , Rutina
13.
Mol Neurobiol ; 60(9): 5426-5449, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314656

RESUMO

Memory loss, often known as amnesia, is common in the elderly population and refers to forgetting facts and experiences. It is associated with increased mitochondrial fragmentation, though the contribution of mitochondrial dynamics in amnesia is poorly understood. Therefore, the present study is aimed at elucidating the role of Mdivi-1 in mitochondrial dynamics, hippocampal plasticity, and memory during scopolamine (SC)-induced amnesia. The findings imply that Mdivi-1 significantly increased the expression of Arc and BDNF proteins in the hippocampus of SC-induced amnesic mice, validating improved recognition and spatial memory. Moreover, an improved mitochondrial ultrastructure was attributed to a decline in the percentage of fragmented and spherical-shaped mitochondria after Mdivi-1 treatment in SC-induced mice. The significant downregulation of p-Drp1 (S616) protein and upregulation of Mfn2, LC3BI, and LC3BII proteins in Mdivi-1-treated SC-induced mice indicated a decline in fragmented mitochondrial number and healthy mitochondrial dynamics. Mdivi-1 treatment alleviated ROS production and Caspase-3 activity and elevated mitochondrial membrane potential, Vdac1 expression, ATP production, and myelination, resulting in reduced neurodegeneration in SC mice. Furthermore, the decline of pro-apoptotic protein cytochrome-c and increase of anti-apoptotic proteins Procaspase-9 and Bcl-2 in Mdivi-1-treated SC-induced mice suggested improved neuronal health. Mdivi-1 also increased the dendritic arborization and spine density, which was further corroborated by increased expression of synaptophysin and PSD95. In conclusion, the current study suggests that Mdivi-1 treatment improves mitochondrial ultrastructure and function through the regulation of mitochondrial dynamics. These changes further improve neuronal cell density, myelination, dendritic arborization, and spine density, decrease neurodegeneration, and improve recognition and spatial memory. Schematic presentation depicts that Mdivi-1 rescues memory decline in scopolamine-induced amnesic male mice by ameliorating mitochondrial dynamics and hippocampal plasticity.


Assuntos
Dinâmica Mitocondrial , Escopolamina , Idoso , Camundongos , Masculino , Humanos , Animais , Amnésia/induzido quimicamente , Hipocampo/metabolismo , Quinazolinonas/farmacologia
14.
Curr Alzheimer Res ; 20(3): 190-201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317907

RESUMO

BACKGROUND/OBJECTIVE: Alzheimer's disease (AD) is mainly characterized by amnesia that affects millions of people worldwide. This study aims to explore the effectiveness capacities of bee venom (BV) for the enhancement of the memory process in a rat model with amnesia-like AD. METHODS: The study protocol contains two successive phases, nootropic and therapeutic, in which two BV doses (D1; 0.25 and D2: 0.5 mg/kg i.p.) were used. In the nootropic phase, treatment groups were compared statistically with a normal group. Meanwhile, in the therapeutic phase, BV was administered to scopolamine (1mg/kg) to induce amnesia-like AD in a rat model in which therapeutic groups were compared with a positive group (donepezil; 1mg/kg i.p.). Behavioral analysis was performed after each phase by Working Memory (WM) and Long-Term Memory (LTM) assessments using radial arm maze (RAM) and passive avoidance tests (PAT). Neurogenic factors; Brain-derived neurotrophic factor (BDNF), and Doublecortin (DCX) were measured in plasma using ELISA and Immunohistochemistry analysis of hippocampal tissues, respectively. RESULTS: During the nootropic phase, treatment groups demonstrated a significant (P < 0.05) reduction in RAM latency times, spatial WM errors, and spatial reference errors compared with the normal group. In addition, the PA test revealed a significant (P < 0.05) enhancement of LTM after 72 hours in both treatment groups; D1 and D2. In the therapeutic phase, treatment groups reflected a significant (P < 0.05) potent enhancement in the memory process compared with the positive group; less spatial WM errors, spatial reference errors, and latency time during the RAM test, and more latency time after 72 hours in the light room. Moreover, results presented a marked increase in the plasma level of BDNF, as well as increased hippocampal DCX-positive data in the sub-granular zone within the D1 and D2 groups compared with the negative group (P < 0.05) in a dose-dependent manner. CONCLUSION: This study revealed that injecting BV enhances and increases the performance of both WM and LTM. Conclusively, BV has a potential nootropic and therapeutic activity that enhances hippocampal growth and plasticity, which in turn improves WM and LTM. Given that this research was conducted using scopolamine-induced amnesia-like AD in rats, it suggests that BV has a potential therapeutic activity for the enhancement of memory in AD patients in a dose-dependent manner but further investigations are needed.


Assuntos
Doença de Alzheimer , Venenos de Abelha , Nootrópicos , Ratos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Nootrópicos/uso terapêutico , Venenos de Abelha/efeitos adversos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Escopolamina/efeitos adversos , Hipocampo/metabolismo , Aprendizagem em Labirinto , Neurogênese , Modelos Animais de Doenças
16.
Drug Dev Ind Pharm ; 49(2): 240-247, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37032647

RESUMO

OBJECTIVE: The purpose of the study is to assess the bioavailability and neuroprotective effect of hesperetin (Hesp)-loaded nanofibers. METHODS: Electrospinning was used to create and characterize polyvinyl pyrrolidone-based Hesp-loaded nanofibers. To evaluate the produced nanofibers, preclinical studies were conducted. The study involved five groups of Wistar rats, and the treatments were administered as follows. Group 1 (control) was given regular saline for 14 d. On the 14th day, Group 2 was given scopolamine. Group 3 was given donepezil for 14 d and then scopolamine on the 14th. Group 4 was given Hesp for 14 d and then scopolamine on the 14th. Group 5 was given Hesp-loaded nanofibers for 14 d, followed by scopolamine on the 14th. On the 14th day, rats' memory was tested using Cook's pole climbing apparatus and the Morris water maze (MWM). On the 15th day, rats from each group were slaughtered, brain tissues were separated, and biochemical and histological analyses were performed. In addition, in vitro dissolution experiments and pharmacokinetic studies were carried out. RESULTS: When compared to the control group, scopolamine-treated rats had considerably longer escape latency times, as well as increased acetylcholinesterase (AChE) activity, lipid peroxidation, degeneration, and inflammation in the hippocampus. These parameters were greatly recovered by donepezil and Hesp-loaded nanofibers that had been pretreated. Because of the greatly improved bioavailability of Hesp, the Hesp-loaded nanofibers significantly protected rats from scopolamine-induced amnesia. CONCLUSIONS: Hesp-loaded nanofibers have an excellent neuroprotective effect against scopolamine-induced amnesia due to enhanced bioavailability.


Assuntos
Nanofibras , Fármacos Neuroprotetores , Ratos , Animais , Donepezila/farmacologia , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Acetilcolinesterase/uso terapêutico , Disponibilidade Biológica , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Escopolamina/efeitos adversos , Aprendizagem em Labirinto
17.
Metab Brain Dis ; 38(4): 1261-1272, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36735154

RESUMO

The blackberry (Rubus sp.) is a popular fruit that has a high concentration of phenolic compounds. Pharmacological investigations have demonstrated the important biological activities of the blackberry extract, such as neuroprotective actions. This study aimed to evaluate the effects of blackberry extract on memory and neurochemical parameters in rats subjected to scopolamine (SCO)-induced amnesia. Male rats were divided into five groups: I, control (saline); II, SCO; III, SCO + Rubus sp. (100 mg/kg); IV, SCO + Rubus sp. (200 mg/kg); and V, SCO + donepezil (5 mg/kg). Blackberry extract and donepezil were orally administered for 10 days. On day 11, group I received saline, and groups II, III, IV, and V received SCO (1 mg/kg) intraperitoneally after object recognition behavioral training. Twenty-four hours after the training session, animals were subjected to an object recognition test. Finally, the animals were euthanized, and the cerebral cortex, hippocampus, and cerebellum were collected to evaluate the oxidative stress and acetylcholinesterase (AChE) activity. Rubus sp. extract prevented memory impairment induced by SCO in a manner similar to that of donepezil. Additionally, Rubus sp. extract and donepezil prevented the increase in AChE activity induced by SCO in all the evaluated brain structures. SCO induced oxidative damage in the cerebral cortex, hippocampus, and cerebellum, which was prevented by Rubus sp. and donepezil. Our results suggest that the antioxidant and anticholinesterase activities of Rubus sp. are associated with memory improvement; hence, it can potentially be used for the treatment of neurodegenerative diseases.


Assuntos
Rubus , Ratos , Masculino , Animais , Rubus/metabolismo , Acetilcolinesterase/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/prevenção & controle , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Escopolamina/farmacologia , Hipocampo/metabolismo , Córtex Cerebral/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Cerebelo/metabolismo , Aprendizagem em Labirinto
18.
Behav Brain Res ; 437: 114118, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36116736

RESUMO

The study of the amnesia mechanisms is of both theoretical and practical importance. The mechanisms of anterograde amnesia are the least studied, due to the lack of an experimental model that allows studying this amnesia type molecular and cellular mechanisms. Previously, we found that conditional food aversion memory reconsolidation impairment in snails by NMDA glutamate receptor antagonists led to the amnesia induction, in the late stages of which (>10 days) repeated training did not cause long-term memory formation. In the same animals, long-term memory aversion to a new food type was formed. We characterized this amnesia as specific anterograde amnesia. In the present work we studied the role of epigenetic DNA methylation processes as well as protein and mRNA synthesis in the mechanisms of anterograde amnesia and memory recovery. DNMT methyltransferase inhibitors (iDNMT: zebularine, RG108 (N-Phthalyl-1-tryptophan), and 5-AZA (5-Aza-2'-deoxycytidine)) were used to alter DNA methylation. It was found that in amnesic animals the iDNMT administration before or after shortened repeated training led to the rapid long-term conditional food aversion formation (Ebbinghaus saving effect). This result suggests that amnestic animals retain a latent memory, which is the basis for accelerated memory formation during repeated training. Protein synthesis inhibitors administration (cycloheximide) before or immediately after repeated training or administration of RNA synthesis inhibitor (actinomycin D) after repeated training prevented memory formation under iDNMT action. The earlier protein synthesis inhibitor effect suggests that the proteins required for memory formation are translated from the pre-existing, translationally repressed mRNAs. Thus, we have shown for the first time that the anterograde amnesia key mechanism is DNMT-dependent suppression of the transcription of genes involved in memory mechanisms. Inhibition of DNMT during repeated training reversed these genes expression blockade, opening access to them by transcription factors synthesized during training from the pre-existing mRNAs.


Assuntos
Amnésia Anterógrada , Vitis , Animais , Caracois Helix , Metilação de DNA , Amnésia/induzido quimicamente , Amnésia/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Transtornos da Memória/genética , Aprendizagem da Esquiva
19.
Niger J Physiol Sci ; 38(1): 91-99, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243363

RESUMO

Decline in cholinergic function and oxidative/nitrosative stress play a central role in Alzheimer's disease (AD). Previous quantitative HPLC profiling analysis has revealed the presence of Pinostrobin, formononetin, vitexin and other neuroprotective flavonoids in Cajanus cajan seed extract. This study was designed to investigate the protective action of Cajanus cajan ethanol seed extract (CC) on learning and memory functions using scopolamine mouse model of amnesia. Materials and methods: Adult mice were pretreated with CC (50, 100, or 200mg/kg, p.o) or vehicle (10ml/kg, p.o) for 16 days consecutively. Scopolamine, a competitive muscarinic cholinergic receptor antagonist (1mg/kg, i.p.) was given an hour after CC pretreatment from days 3 to 16.  The mice were subjected to behavioural tests from day 11 (open field test (OFT)/ Y-maze test (YMT) and Morris water maze task (MWM) from days 12-16. Animals were euthanized 1h after behavioral test on day 16 and discrete brain regions isolated for markers of oxidative stress and cholinergic signaling. Molecular docking analysis was undertaken to predict the possible mechanism(s) of CC-induced anti-amnesic action.  pre-administration of CC significantly reversed working memory and learning deficits caused by scopolamine in YMT and MWM tests, respectively. Moreover, CC prevented scopolamine-induced oxidative and nitrosative stress radicals in the hippocampus evidenced in significant increase in glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) activities with a marked decrease in malondialdehyde (MDA) production, as well as significant inhibition of hippocampal scopolamine-induced increase in acetylcholinesterase activity by CC. The molecular docking analysis showed that out of the 19 compounds, the following had the highest binding affinity; Pinostrobin (-8.7 Kcal/mol), friedeline (-7.5kCal/mol), and lupeol (-8.2 Kcal/mol), respectively, to neuronal muscarinic M1 acetylcholine receptor, α7 nicotinic acetylcholine receptor and amyloid beta peptide binding pockets, which further supports the ability of CC to enhance neuronal cholinergic signaling and possible inhibition of amyloid beta aggregation. This study showed that Cajanus cajan seeds extract improved working memory and learning through enhancement of cholinergic signaling, antioxidant capacity and reduction in amyloidogenesis.


Assuntos
Antioxidantes , Cajanus , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Escopolamina/farmacologia , Cajanus/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Peptídeos beta-Amiloides/efeitos adversos , Peptídeos beta-Amiloides/metabolismo , Simulação de Acoplamento Molecular , Aprendizagem em Labirinto , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/prevenção & controle , Estresse Oxidativo , Glutationa/metabolismo , Transmissão Sináptica , Hipocampo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Colinérgicos/efeitos adversos , Colinérgicos/metabolismo , Mecanismos de Defesa , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo
20.
Biol Open ; 11(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541652

RESUMO

General anesthesia could induce amnesia, however the mechanism remains unclear. We hypothesized that suppression of neuronal ensemble activity in the hippocampus by anesthesia during the post-learning period causes retrograde amnesia. To test this hypothesis, two experiments were conducted with sevoflurane anesthesia (2.5%, 30 min): a hippocampus-dependent memory task, the context pre-exposure facilitation effect (CPFE) procedure to measure memory function and in vivo calcium imaging to observe neural activity in hippocampal CA1 during context exploration and sevoflurane/home cage session. Sevoflurane treatment just after context pre-exposure session impaired the CPFE memory, suggesting sevoflurane induced retrograde amnesia. Calcium imaging showed sevoflurane treatment prevented neuronal activity in CA1. Further analysis of neuronal activity with non-negative matrix factorization, which extracts neural ensemble activity based on synchronous activity, showed that sevoflurane treatment reduced the reactivation of neuronal ensembles between during context exploration just before and one day after sevoflurane inhalation. These results suggest that sevoflurane treatment immediately after learning induces amnesia, resulting from suppression of reactivation of neuronal ensembles.


Assuntos
Amnésia Retrógrada , Éteres Metílicos , Ratos , Animais , Sevoflurano/efeitos adversos , Cálcio , Éteres Metílicos/efeitos adversos , Ratos Sprague-Dawley , Amnésia/induzido quimicamente , Hipocampo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...